Search results
Results from the WOW.Com Content Network
In the field of enzymology, a betaine-homocysteine S-methyltransferase also known as betaine-homocysteine methyltransferase (BHMT) is a zinc metallo-enzyme that catalyzes the transfer of a methyl group from trimethylglycine and a hydrogen ion from homocysteine to produce dimethylglycine and methionine respectively: [2]
In enzymology, a homocysteine S-methyltransferase (EC 2.1.1.10) is an enzyme that catalyzes the chemical reaction. S-methylmethionine + L-homocysteine 2 L-methionine. Thus, the two substrates of this enzyme are S-methylmethionine and L-homocysteine, and it produces 2 molecules of L-methionine.
Pages for logged out editors learn more. Contributions; Talk; Betaine-homocysteine methyltransferase
In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). [5] [6] Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, [7] and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle.
A second pathway, which is usually restricted to liver and kidney in most mammals, involves betaine-homocysteine methyltransferase (BHMT) and requires trimethylglycine as a cofactor. [ 2 ] DNA processing and epigenetics
Nutritionally, betaine is not needed when sufficient dietary choline is present for synthesis. [18] When insufficient betaine is available, elevated homocysteine levels and decreased SAM levels in blood occur. Supplementation of betaine in this situation would resolve these blood marker issues, but not compensate for other functions of choline ...
Levomefolic acid (INN, also known as L-5-MTHF, L-methylfolate and L-5-methyltetrahydrofolate and (6S)-5-methyltetrahydrofolate, and (6S)-5-MTHF) is the primary biologically active form of folate used at the cellular level for DNA reproduction, the cysteine cycle and the regulation of homocysteine.
S-adenosyl-L-methionine + DNA adenine S-adenosyl-L-homocysteine + DNA 6-methylaminopurine m6A was primarily found in prokaryotes until 2015 when it was also identified in some eukaryotes. m6A methyltransferases methylate the amino group in DNA at C-6 position specifically to prevent the host system to digest own genome through restriction enzymes.