enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Floating-point error mitigation - Wikipedia

    en.wikipedia.org/wiki/Floating-point_error...

    Variable length arithmetic represents numbers as a string of digits of a variable's length limited only by the memory available. Variable-length arithmetic operations are considerably slower than fixed-length format floating-point instructions.

  3. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.

  4. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal to 0) is used.

  5. NaN - Wikipedia

    en.wikipedia.org/wiki/NaN

    Floating-point operations other than ordered comparisons normally propagate a quiet NaN (qNaN). Most floating-point operations on a signaling NaN (sNaN) signal the invalid-operation exception; the default exception action is then the same as for qNaN operands and they produce a qNaN if producing a floating-point result.

  6. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    Floating-point Indefinite, the result of invalid calculations such as square root of a negative number, logarithm of a negative number, ⁠ 0 / 0 ⁠, ⁠ infinity / infinity ⁠, infinity times 0, and others, when the processor has been configured to not generate exceptions for invalid operands. The sign bit is meaningless.

  7. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-point arithmetic is often used to allow very small and very large real numbers that require fast processing times.

  8. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    Some operations of floating-point arithmetic are invalid, such as taking the square root of a negative number. The act of reaching an invalid result is called a floating-point exception. An exceptional result is represented by a special code called a NaN, for "Not a Number". All NaNs in IEEE 754-1985 have this format: sign = either 0 or 1.

  9. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit ...