Search results
Results from the WOW.Com Content Network
Fan-Rong King Chung Graham (Chinese: 金芳蓉; pinyin: Jīn Fāngróng; born October 9, 1949), known professionally as Fan Chung, is a Taiwanese-born American mathematician who works mainly in the areas of spectral graph theory, extremal graph theory and random graphs, in particular in generalizing the Erdős–Rényi model for graphs with general degree distribution (including power-law ...
Spectral graph theory emerged in the 1950s and 1960s. Besides graph theoretic research on the relationship between structural and spectral properties of graphs, another major source was research in quantum chemistry , but the connections between these two lines of work were not discovered until much later. [ 15 ]
Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants.
Analogously to the classical Fourier transform, graph Fourier transform provides a way to represent a signal in two different domains: the vertex domain and the graph spectral domain. Note that the definition of the graph Fourier transform and its inverse depend on the choice of Laplacian eigenvectors, which are not necessarily unique. [3]
The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional ...
This quantity is studied in the context of spectral graph theory. More precisely, let G be a graph with n vertices. It is assumed that G is a simple graph, that is, it does not contain loops or parallel edges. Let A be the adjacency matrix of G and let , =, …,, be the eigenvalues of A. Then the energy of the graph is defined as:
In mathematics, spectral theory deals with attempts to understand operators, graphs and dynamical systems by means of the spectrum of eigenvalues associated with the system. The classical examples of spectra are the vibration modes of a violin string or the spectrum of a hydrogen atom .
In the mathematical field of spectral graph theory, a Ramanujan graph is a regular graph whose spectral gap is almost as large as possible (see extremal graph theory). Such graphs are excellent spectral expanders .