Search results
Results from the WOW.Com Content Network
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number.For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10.
Napier's "logarithm" is related to the natural logarithm by the relation ()and to the common logarithm by ().Note that and (). Napierian logarithms are essentially natural logarithms with decimal points shifted 7 places rightward and with sign reversed.
The iterated logarithm is closely related to the generalized logarithm function used in symmetric level-index arithmetic.The additive persistence of a number, the number of times someone must replace the number by the sum of its digits before reaching its digital root, is ().
The exponential of a matrix A is defined by =!. Given a matrix B, another matrix A is said to be a matrix logarithm of B if e A = B.. Because the exponential function is not bijective for complex numbers (e.g. = =), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below.