Search results
Results from the WOW.Com Content Network
In chemistry, a reagent (/ r i ˈ eɪ dʒ ən t / ree-AY-jənt) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. [1] The terms reactant and reagent are often used interchangeably, but reactant specifies a substance consumed in the course of a chemical reaction. [ 1 ]
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
This is often seen in redox titrations when the different oxidation states of the product and reactant produce different colors. Precipitation: If a reaction produces a solid, a precipitate will form during the titration. A classic example is the reaction between Ag + and Cl − to form the insoluble salt AgCl. Cloudy precipitates usually make ...
The "effective concentration" is the concentration the reactant would have to be, free in solution, to experiences the same collisional frequency. Often such theoretical effective concentrations are unphysical and impossible to realize in reality – which is a testament to the great catalytic power of many enzymes, with massive rate increases ...
A and B are reactant chemical species, S and T are product species, and α, β, σ, and τ are the stoichiometric coefficients of the respective reactants and products: α A + β B ⇌ σ S + τ T. The equilibrium concentration position of a reaction is said to lie "far to the right" if, at equilibrium, nearly all the reactants are consumed.
Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]
One key difference between the intercepting reaction and the parent reaction described above is the presence of some amount of product in the parent reaction at the interception point. Product inhibition has long been known to influence catalyst efficiency of many systems, and in the case of same-excess experiments, it prevents the intercepting ...
Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...