Search results
Results from the WOW.Com Content Network
An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...
The real numbers can be constructed as a completion of the rational numbers, in such a way that a sequence defined by a decimal or binary expansion like (3; 3.1; 3.14; 3.141; 3.1415; ...) converges to a unique real number—in this case π. For details and other constructions of real numbers, see Construction of the real numbers.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
Dedekind used his cut to construct the irrational, real numbers.. In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind (but previously considered by Joseph Bertrand [1] [2]), are а method of construction of the real numbers from the rational numbers.
There is a construction of the real numbers based on the idea of using Dedekind cuts of rational numbers to name real numbers; e.g. the cut (L,R) described above would name . If one were to repeat the construction of real numbers with Dedekind cuts (i.e., "close" the set of real numbers by adding all possible Dedekind cuts), one would obtain no ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Constructions_of_the_real_numbers&oldid=239547839"
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
One way of specifying a real number uses geometric techniques. A real number is a constructible number if there is a method to construct a line segment of length using a compass and straightedge, beginning with a fixed line segment of length 1.