Search results
Results from the WOW.Com Content Network
In the A/T site, the A-site half resides in the small ribosomal subunit where the mRNA decoding site is located. The mRNA decoding site is where the mRNA codon is read out during translation. The T-site half resides mainly on the large ribosomal subunit where EF-Tu or eEF-1 interacts with the ribosome.
An aminoacyl-tRNA, with the tRNA above the arrow and a generic amino acid below the arrow. Most of the tRNA structure is shown as a simplified, colorful ball-and-stick model; the terminal adenosine and the amino acid are shown as structural formulas.
The synthetase first binds ATP and the corresponding amino acid (or its precursor) to form an aminoacyl-adenylate, releasing inorganic pyrophosphate (PPi).The adenylate-aaRS complex then binds the appropriate tRNA molecule's D arm, and the amino acid is transferred from the aa-AMP to either the 2'- or the 3'-OH of the last tRNA nucleotide (A76) at the 3'-end.
[8] [9] [10] Such experiments demonstrate that the properties of heredity and evolution are not limited to the natural genetic polymers of DNA and RNA. [11] The high biological stability of TNA relative to other nucleic acid systems that are capable of undergoing Darwinian evolution, suggests that TNA is a strong candidate for the development ...
In vivo experiments show that the N-terminal sequences are used as transit peptides for import into the mitochondria and plastids. Comparison studies using available tRNA nucleotidyltransferase sequences have identified a single gene coding for this enzyme in plants.
The article circulated to the members of the RNA Tie Club in January 1955 as "On Degenerate Templates and the Adaptor Hypothesis: A Note for the RNA Tie Club" is described as "one of the most important unpublished articles in the history of science", [25] [26] and "the most famous unpublished paper in the annals of molecular biology." [27]
Crystal structures of Leishmania major YARS at 3.0 Å resolution show that the two halves of a single molecule form a pseudo-dimer that resembles the canonical YARS dimer. The C-terminal copy of the catalytic domain has lost the catalytically important HIGH and KMSKS motifs, characteristic of class I aminoacyl -tRNA synthetases.
The presence of this functional group causes the helix to mostly take the A-form geometry, [11] although in single strand dinucleotide contexts, RNA can rarely also adopt the B-form most commonly observed in DNA. [12] The A-form geometry results in a very deep and narrow major groove and a shallow and wide minor groove. [13]