enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    The rate of the overall reaction depends on the slowest step, so the overall reaction will be first order when the reaction of the energized reactant is slower than the collision step. The half-life is independent of the starting concentration and is given by t 1 / 2 = ln ⁡ ( 2 ) k {\textstyle t_{1/2}={\frac {\ln {(2)}}{k}}} .

  3. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    The statement that the first step is the slow step actually means that the first step in the reverse direction is slower than the second step in the forward direction, so that almost all NO 3 is consumed by reaction with CO and not with NO. That is, r −1 ≪ r 2, so that r 1 − r 2 ≈ 0.

  4. Reaction mechanism - Wikipedia

    en.wikipedia.org/wiki/Reaction_mechanism

    In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical reaction occurs. [1] A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction. The detailed steps of a reaction are not observable in most cases.

  5. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    However, all reactions can be represented as a series of elementary reactions and, if the mechanism is known in detail, the rate equation for each individual step is given by the expression so that the overall rate equation can be derived from the individual steps. When this is done the equilibrium constant is obtained correctly from the rate ...

  6. Lindemann mechanism - Wikipedia

    en.wikipedia.org/wiki/Lindemann_mechanism

    The Lindemann mechanism is used to model gas phase decomposition or isomerization reactions. Although the net formula for decomposition or isomerization appears to be unimolecular and suggests first-order kinetics in the reactant, the Lindemann mechanism shows that the unimolecular reaction step is preceded by a bimolecular activation step so ...

  7. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  8. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1] The kinetic order of a complex (multistep) reaction, however, is not necessarily equal to the number of molecules involved.

  9. Reactions on surfaces - Wikipedia

    en.wikipedia.org/wiki/Reactions_on_surfaces

    The result is equivalent to the Michaelis–Menten kinetics of reactions catalyzed at a site on an enzyme. The rate equation is complex, and the reaction order is not clear. In experimental work, usually two extreme cases are looked for in order to prove the mechanism. In them, the rate-determining step can be: Limiting step: adsorption/desorption