Search results
Results from the WOW.Com Content Network
However, AWG is dissimilar to IEC 60228, the metric wire-size standard used in most parts of the world, based directly on the wire cross-section area (in square millimetres, mm 2). The AWG tables are for a single, solid and round conductor. The AWG of a stranded wire is determined by the cross-sectional area of the equivalent solid conductor.
The conversion factor from square mils to circular mils is therefore 4/ π cmil per square mil: 4 π c m i l m i l 2 . {\displaystyle {\rm {{\frac {4}{\pi }}{\frac {cmil}{mil^{2}}}.}}} The formula for the area of an arbitrary circle in circular mils can be derived by applying this conversion factor to the standard formula for the area of a ...
Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it The first attempt to adopt a geometrical system was made by Messrs Brown & Sharpe in 1855.
Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it. In engineering applications, it is often most convenient to describe a wire in terms of its cross-section area, rather than its diameter, because the cross section is directly proportional to its strength and weight ...
In modern applications, wire size is more commonly measured in terms of cross-sectional area, expressed in square millimeters, particularly for electrical installation cables. The current British Standard for metallic materials, including wires and sheets, is BS 6722:1986, which exclusively uses metric measurements .
For example, AWG 12g is 2.1 mm, but SWG 12g is 2.6 mm. AWG 8g happens to be the same as SWG 10g. AWG 000g is 10.4 mm, but SWG 000g is 9.4 mm. In most discussions of body jewelry, sizes are specified by giving the gauge, usually abbreviated by the suffix "g", the same symbol as used for grams : "12g".
By default, the output value is rounded to adjust its precision to match that of the input. An input such as 1234 is interpreted as 1234 ± 0.5, while 1200 is interpreted as 1200 ± 50, and the output value is displayed accordingly, taking into account the scale factor used in the conversion.
kilogram-force per square millimetre: kgf/mm 2: ≡ 1 kgf/mm 2 = 9.806 65 × 10 6 Pa [33] kip per square inch: ksi ≡ 1 kipf/sq in ≈ 6.894 757 × 10 6 Pa [33] long ton per square foot: ≡ 1 long ton × g 0 / 1 sq ft ≈ 1.072 517 801 1595 × 10 5 Pa: micrometre of mercury: μmHg ≡ 13 595.1 kg/m 3 × 1 μm × g 0 ≈ 0.001 torr ≈ 0.133 ...