enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  3. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  4. Vowpal Wabbit - Wikipedia

    en.wikipedia.org/wiki/Vowpal_Wabbit

    Categorical (via flexible feature-naming and the hash trick) Can deal with missing values/sparse-features; Other features On the fly generation of feature interactions (quadratic and cubic) On the fly generation of N-grams with optional skips (useful for word/language data-sets) Automatic test-set holdout and early termination on multiple passes

  5. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    Besides feature selection described above, LASSO has some limitations. Ridge regression provides better accuracy in the case > for highly correlated variables. [3] In another case, <, LASSO selects at most variables. Moreover, LASSO tends to select some arbitrary variables from group of highly correlated samples, so there is no grouping effect.

  6. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  7. QLattice - Wikipedia

    en.wikipedia.org/wiki/QLattice

    The QLattice is a software library which provides a framework for symbolic regression in Python.It works on Linux, Windows, and macOS.The QLattice algorithm is developed by the Danish/Spanish AI research company Abzu. [1]

  8. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Cubic, quartic and higher polynomials. For regression with high-order polynomials, the use of orthogonal polynomials is recommended. [15] Numerical smoothing and differentiation — this is an application of polynomial fitting. Multinomials in more than one independent variable, including surface fitting; Curve fitting with B-splines [12]

  9. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.