Search results
Results from the WOW.Com Content Network
They found that T1 twinning was the dominant slip system at room temperature for strain rates between 10 −3 and 10 3 s −1. The basal slip did not contribute to deformation below 400°C. Twinning was found to be rate insensitive, and the rate sensitivity of slip could explain changes in twinning behaviour as a function of strain rate.
Twinning and slip are competitive mechanisms for crystal deformation. Each mechanism is dominant in certain crystal systems and under certain conditions. [23] In fcc metals, slip is almost always dominant because the stress required is far less than twinning stress. [24] Twinning can occur by cooperative displacement of atoms along the face of ...
The two primary methods of deformation in metals are slip and twinning. Slip occurs by dislocation glide of either screw or edge dislocations within a slip plane. Slip is by far the most common mechanism. Twinning is less common but readily occurs under some circumstances. Twinning occurs when there are not enough slip systems to accommodate ...
In materials science, slip is the large displacement of one part of a crystal relative to another part along crystallographic planes and directions. [1] Slip occurs by the passage of dislocations on close/packed planes, which are planes containing the greatest number of atoms per area and in close-packed directions (most
Plasticity in a crystal of pure metal is primarily caused by two modes of deformation in the crystal lattice: slip and twinning. Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions.
The deformation field at the slip-band is due to three-dimensional elastic and plastic strains where the concentrated shear of the slip band tip deforms the grain in its vicinity. The elastic strains describe the stress concentration ahead of the slip band , which is important as it can affect the transfer of plastic deformation across grain ...
These values vary with deformation temperature, strain rate and chemical composition. [3] [4] Researchers have shown that increased work hardening attributed to the partitioning of the austenite grains is the main contributing factor to the overall elongation of TWIP steels in which the mechanical strain of twinning have a rather small ...
[17] [8] At room temperature, basal plane slip of dislocation and mechanical crystal twinning are the only operating deformation mechanisms; the presence of twinning additionally requires specific loading conditions to be favorable. [8] For these reasons processing of magnesium alloys must be done at high temperatures to avoid brittle fracture ...