Search results
Results from the WOW.Com Content Network
Deformation twinning is a response to shear stress. The crystal structure is displaced along successive planes of the crystal, a process also called glide. The twinning is always reflection twinning and the glide plane is also the mirror plane. Deformation twinning can be observed in a calcite cleavage fragment by applying gentle pressure with ...
Other features indicative of the details of how the plastic deformation took place, such as a region of cooperative shear caused by deformation twinning, can also sometimes be seen on such surfaces. In the optical micrograph shown, there is also evidence of grain rotations – for example, at the “rim” of the indent and in the form of ...
Plasticity in a crystal of pure metal is primarily caused by two modes of deformation in the crystal lattice: slip and twinning. Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions.
Sample deformation mechanism map for a hypothetical material. Here there are three main regions: plasticity, power law creep, and diffusional flow. A deformation mechanism map is a way of representing the dominant deformation mechanism in a material loaded under a given set of conditions. The technique is applicable to all crystalline materials ...
A slip system describes the set of symmetrically identical slip planes and associated family of slip directions for which dislocation motion can easily occur and lead to plastic deformation. The magnitude and direction of slip are represented by the Burgers vector , b .
Twinning is less common but readily occurs under some circumstances. Twinning occurs when there are not enough slip systems to accommodate deformation and/or when the material has a very low SFE. Twins are abundant in many low SFE metals like copper alloys, but are rarely seen in high SFE metals like aluminum.
Variously described as a "screaming" or "crackling" sound, the effect is caused by the crystal twinning in the metal. [1] The sound is not particularly loud, despite terms like "crying" and "screaming". It is very noticeable when a hot-dip tin coated sheet metal is bent at high speed over rollers during processing.
Dynamic strain aging also causes a plateau in the strength, a peak in flow stress [9] a peak in work hardening, a peak in the Hall–Petch constant, and minimum variation of ductility with temperature. [10] Since dynamic strain aging is a hardening phenomenon it increases the strength of the material. [10]