Search results
Results from the WOW.Com Content Network
[4] [5] Fowler managed to produce similar lines from a hydrogen–helium mixture in 1912, and supported Pickering's conclusion as to their origin. [6] Niels Bohr , however, included an analysis of the series in his 'trilogy' [ 7 ] [ 8 ] on atomic structure [ 9 ] and concluded that Pickering and Fowler were wrong and that the spectral lines ...
Spectral lines of helium. In 1881, Italian physicist Luigi Palmieri detected helium on Earth for the first time through its D 3 spectral line, when he analyzed a material that had been sublimated during a recent eruption of Mount Vesuvius. [34]
A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. ... helium: 2 He lithium: 3 Li beryllium: 4 Be boron: 5 B carbon: 6 C ...
Similarly, there is ambiguity regarding the e line, since it can refer to the spectral lines of both iron (Fe) and mercury (Hg). In order to resolve ambiguities that arise in usage, ambiguous Fraunhofer line designations are preceded by the element with which they are associated (e.g., Mercury e line and Helium d line).
The diffuse series is a series of spectral lines in the atomic emission spectrum caused when electrons jump between the lowest p orbital and d orbitals of an atom. The total orbital angular momentum changes between 1 and 2. The spectral lines include some in the visible light, and may extend into ultraviolet or near infrared.
The numeral I is used for spectral lines associated with the neutral element, II for those from the first ionization state, III for those from the second ionization state, and so on. [1] For example, "He I" denotes lines of neutral helium, and "C IV" denotes lines arising from the third ionization state, C 3+, of carbon.
In physics and chemistry, the Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron goes from n ≥ 2 to n = 1 (where n is the principal quantum number), the lowest energy level of the electron (groundstate).
In planetary nebulae, the brightest of these spectral lines was at a wavelength of 500.7 nanometres, which did not correspond with a line of any known chemical element. At first it was hypothesized that the line might be due to an unknown element, which was named nebulium —a similar idea had led to the discovery of helium through analysis of ...