Search results
Results from the WOW.Com Content Network
An anabatic wind, from the Greek anabatos, verbal of anabainein meaning "moving upward", is a warm wind which blows up a steep slope or mountain side, driven by heating of the slope through insolation. [1] [2] It is also known as upslope flow. These winds typically occur during the daytime in calm sunny weather.
Also actiniform. Describing a collection of low-lying, radially structured clouds with distinct shapes (resembling leaves or wheels in satellite imagery), and typically organized in extensive mesoscale fields over marine environments. They are closely related to and sometimes considered a variant of stratocumulus clouds. actinometer A scientific instrument used to measure the heating power of ...
A surface weather analysis is a type of weather map that depicts positions for high and low-pressure areas, as well as various types of synoptic scale systems such as frontal zones. Isotherms can be drawn on these maps, which are lines of equal temperature. Isotherms are drawn normally as solid lines at a preferred temperature interval. [2]
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
For example, the adiabatic flame temperature uses this approximation to calculate the upper limit of flame temperature by assuming combustion loses no heat to its surroundings. In meteorology , adiabatic expansion and cooling of moist air, which can be triggered by winds flowing up and over a mountain for example, can cause the water vapor ...
The dry adiabatic lapse rate (for unsaturated air) is 3 °C (5.4 °F) per 1,000 vertical feet (300 m). The moist adiabatic lapse rate varies from 1.1 to 2.8 °C (2.0 to 5.0 °F) per 1,000 vertical feet (300 m). The combination of moisture and temperature determine the stability of the air and the resulting weather. Cool, dry air is very stable ...
Diurnal wind system variation in the Appalachian mountain range. Mountain and valley breezes form through a process similar to sea and land breezes. During the day, the sun heats up mountain air rapidly while the valley remains relatively cooler. Convection causes it to rise, causing a valley breeze. At night, the process is reversed.
By assuming the energy amount due to solar radiation it is possible to predict the 2 m (6.6 ft) temperature, humidity, and wind during the day, the development of the boundary layer of the atmosphere, the occurrence and development of clouds and the conditions for soaring flight during the day.