Search results
Results from the WOW.Com Content Network
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
Even if the material's resistivity is known, calculating the resistance of something made from it may, in some cases, be much more complicated than the formula = / above. One example is spreading resistance profiling , where the material is inhomogeneous (different resistivity in different places), and the exact paths of current flow are not ...
If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.
A convenient formula (attributed to F.E. Terman) for the diameter D W of a wire of circular cross-section whose resistance will increase by 10% at frequency f is: [7] = / This formula for the increase in AC resistance is accurate only for an isolated wire.
The bridge wire EF has a jockey contact D placed along it and is slid until the galvanometer G measures zero. The thick-bordered areas are thick copper busbars of very low resistance, to limit the influence on the measurement. Place a known resistance in position Y. Place the unknown resistance in position X.
The two most significant results of the Drude model are an electronic equation of motion, = (+ ) , and a linear relationship between current density J and electric field E, =. Here t is the time, p is the average momentum per electron and q, n, m , and τ are respectively the electron charge, number density, mass, and mean free time between ...
Contact resistance values are typically small (in the microohm to milliohm range). Contact resistance can cause significant voltage drops and heating in circuits with high current. Because contact resistance adds to the intrinsic resistance of the conductors, it can cause significant measurement errors when exact resistance values are needed.
Various resistor types of different shapes and sizes. A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses.