Search results
Results from the WOW.Com Content Network
Thomsen's theorem, = Thomsen's theorem , named after Gerhard Thomsen , is a theorem in elementary geometry. It shows that a certain path constructed by line segments being parallel to the edges of a triangle always ends up at its starting point.
Let = + and ¯ = where and are real.. Let () = (,) + (,) be any holomorphic function.. Example 1: = (+) + Example 2: = + In his article, [1] Milne ...
Thomsen wrote 22 papers on various topics in geometry and furthermore a few papers on theoretical physics as well. The latter were mostly written in Italian rather than in German. Thomsen also wrote a book on the foundations of elementary geometry. [1] In elementary geometry Thomsen's theorem is named after him. [5]
If in the affine version of the dual "little theorem" point is a point at infinity too, one gets Thomsen's theorem, a statement on 6 points on the sides of a triangle (see diagram). The Thomsen figure plays an essential role coordinatising an axiomatic defined projective plane. [ 6 ]
Louis Melville Milne-Thomson CBE FRSE RAS (1 May 1891 – 21 August 1974) was an English applied mathematician who wrote several classic textbooks on applied mathematics, including The Calculus of Finite Differences, Theoretical Hydrodynamics, and Theoretical Aerodynamics.
In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow. [ 1 ] [ 2 ] It was named after the English mathematician L. M. Milne-Thomson .
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]