Search results
Results from the WOW.Com Content Network
You may have vague recollections of hyperbole from high school English or Language Arts class es.Or, perhaps you’re a seasoned writer looking to add more hyperbole examples to your arsenal.
A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse.
Hyperbole (/ h aɪ ˈ p ɜːr b əl i / ⓘ; adj. hyperbolic / ˌ h aɪ p ər ˈ b ɒ l ɪ k / ⓘ) is the use of exaggeration as a rhetorical device or figure of speech.In rhetoric, it is also sometimes known as auxesis (literally 'growth').
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes.A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.
Intersecting with the line at infinity, each conic section has two points at infinity. If these points are real, the curve is a hyperbola; if they are imaginary conjugates, it is an ellipse; if there is only one double point, it is a parabola. If the points at infinity are the cyclic points [1: i: 0] and [1: –i: 0], the conic section is a circle.
The blue path in this image is an example of a hyperbolic trajectory. A hyperbolic trajectory is depicted in the bottom-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the hyperbolic trajectory is shown in red.
3. Ferrules. Everyone knows about pencils. Everyone knows about erasers. But do people know about the ferrule, the metallic band at the top of the pencil that holds the eraser in place?
For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions). The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector.