Search results
Results from the WOW.Com Content Network
As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction 5 / 7 when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...
In the simple case of a function of one variable, say, h(x), we can solve an equation of the form h(x) = c for some constant c by considering what is known as the inverse function of h. Given a function h : A → B, the inverse function, denoted h −1 and defined as h −1 : B → A, is a function such that
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
The rank of a system of equations (that is, the rank of the augmented matrix) can never be higher than [the number of variables] + 1, which means that a system with any number of equations can always be reduced to a system that has a number of independent equations that is at most equal to [the number of variables] + 1.
Divide the highest term of the remainder by the highest term of the divisor (3x ÷ x = 3). Place the result (+3) below the bar. 3x has been divided leaving no remainder, and can therefore be marked as used. The result 3 is then multiplied by the second term in the divisor −3 = −9. Determine the partial remainder by subtracting −4 − (− ...
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
Bézout's theorem asserts that a well-behaved system whose equations have degrees d 1, ..., d n has at most d 1 ⋅⋅⋅d n solutions. This bound is sharp. If all the degrees are equal to d, this bound becomes d n and is exponential in the number of variables. (The fundamental theorem of algebra is the special case n = 1.)