enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).

  3. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    Faraday's law was later generalized to become the Maxwell–Faraday equation, one of the four Maxwell equations in his theory of electromagnetism. Electromagnetic induction has found many applications, including electrical components such as inductors and transformers, and devices such as electric motors and generators.

  4. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    For Faraday's first law, M, F, v are constants; thus, the larger the value of Q, the larger m will be. For Faraday's second law, Q, F, v are constants; thus, the larger the value of (equivalent weight), the larger m will be. In the simple case of constant-current electrolysis, Q = It, leading to

  5. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    The first equation listed above corresponds to both Gauss's Law (for β = 0) and the Ampère-Maxwell Law (for β = 1, 2, 3). The second equation corresponds to the two remaining equations, Gauss's law for magnetism (for β = 0) and Faraday's Law (for β = 1, 2, 3).

  6. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    This is related to a certain limited kind of redundancy in Maxwell's equations: It can be proven that any system satisfying Faraday's law and Ampère's circuital law automatically also satisfies the two Gauss's laws, as long as the system's initial condition does, and assuming conservation of charge and the nonexistence of magnetic monopoles.

  7. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    Equation [D], with the μv × H term, is effectively the Lorentz force, similarly to equation (77) of his 1861 paper (see above). When Maxwell derives the electromagnetic wave equation in his 1865 paper, he uses equation [D] to cater for electromagnetic induction rather than Faraday's law of induction which is used in modern textbooks. (Faraday ...

  8. Fleming's right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Fleming's_right-hand_rule

    When a conductor such as a wire attached to a circuit moves through a magnetic field, an electric current is induced in the wire due to Faraday's law of induction. The current in the wire can have two possible directions. Fleming's right-hand rule gives which direction the current flows.

  9. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.