Search results
Results from the WOW.Com Content Network
The TI-84 Plus C Silver Edition was released in 2013 as the first Z80-based Texas Instruments graphing calculator with a color screen.It had a 320×240-pixel full-color screen, a modified version of the TI-84 Plus's 2.55MP operating system, a removable 1200 mAh rechargeable lithium-ion battery, and keystroke compatibility with existing math and programming tools. [6]
The Bernoulli distribution is a special case of the binomial distribution with = [4] The kurtosis goes to infinity for high and low values of p , {\displaystyle p,} but for p = 1 / 2 {\displaystyle p=1/2} the two-point distributions including the Bernoulli distribution have a lower excess kurtosis , namely −2, than any other probability ...
The following table compares general and technical information for a selection of common and uncommon Texas Instruments graphing calculators. Many of the calculators in this list have region-specific models that are not individually listed here, such as the TI-84 Plus CE-T, a TI-84 Plus CE designed for non-French European markets.
Jacob Bernoulli's first important contributions were a pamphlet on the parallels of logic and algebra published in 1685, work on probability in 1685 and geometry in 1687. His geometry result gave a construction to divide any triangle into four equal parts with two perpendicular lines.
The cover page of Ars Conjectandi. Ars Conjectandi (Latin for "The Art of Conjecturing") is a book on combinatorics and mathematical probability written by Jacob Bernoulli and published in 1713, eight years after his death, by his nephew, Niklaus Bernoulli.
The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables.
The probability measure thus defined is known as the Binomial distribution. As we can see from the above formula that, if n=1, the Binomial distribution will turn into a Bernoulli distribution. So we can know that the Bernoulli distribution is exactly a special case of Binomial distribution when n equals to 1.
A random variable X has a Bernoulli distribution if Pr(X = 1) = p and Pr(X = 0) = 1 − p for some p ∈ (0, 1).. De Finetti's theorem states that the probability distribution of any infinite exchangeable sequence of Bernoulli random variables is a "mixture" of the probability distributions of independent and identically distributed sequences of Bernoulli random variables.