enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    The expected values of the powers of X are called the moments of X; the moments about the mean of X are expected values of powers of X − E[X]. The moments of some random variables can be used to specify their distributions, via their moment generating functions.

  3. Law of total covariance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_covariance

    Note: The conditional expected values E( X | Z) and E( Y | Z) are random variables whose values depend on the value of Z. Note that the conditional expected value of X given the event Z = z is a function of z. If we write E( X | Z = z) = g(z) then the random variable E( X | Z) is g(Z). Similar comments apply to the conditional covariance.

  4. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...

  5. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    Note that the conditional expected value ⁡ is a random variable in its own right, whose value depends on the value of . Notice that the conditional expected value of given the event = is a function of (this is where adherence to the conventional and rigidly case-sensitive notation of probability theory becomes important!).

  6. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    An expectation E on an algebra A of random variables is a normalized, positive linear functional. What this means is that E[k] = k where k is a constant; E[X * X] ≥ 0 for all random variables X; E[X + Y] = E[X] + E[Y] for all random variables X and Y; and; E[kX] = kE[X] if k is a constant. One may generalize this setup, allowing the algebra ...

  7. Law of total expectation - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_expectation

    The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value ⁡ is defined, and is any random variable on the same probability space, then

  8. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    However, some distributions may not have a finite variance, despite their expected value being finite. An example is a Pareto distribution whose index k {\displaystyle k} satisfies 1 < k ≤ 2. {\displaystyle 1<k\leq 2.}

  9. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    Similarly, [1] ⁡ [()] (′ (⁡ [])) ⁡ [] = (′ ()) (″ ()) The above is obtained using a second order approximation, following the method used in estimating ...