Search results
Results from the WOW.Com Content Network
In chemistry, molecular symmetry describes the symmetry present in molecules and the classification of these molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can be used to predict or explain many of a molecule's chemical properties , such as whether or not it has a dipole moment , as well ...
For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group (number of invariant symmetry operations). The finite group notation used is: Z n: cyclic group of order n, D n: dihedral group isomorphic to the symmetry group of an n–sided regular ...
Molecular symmetry in physics and chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in the application of Quantum Mechanics in physics and chemistry, for example it can be used to predict or explain many of a molecule's properties, such as its dipole moment and its allowed ...
However, there are three more infinite series of symmetry groups with this abstract group type: C nv of order 2n, the symmetry group of a regular n-sided pyramid; D nd of order 4n, the symmetry group of a regular n-sided antiprism; D nh of order 4n for odd n. For n = 1 we get D 2, already covered above, so n ≥ 3. Note the following property:
A frequent notation for the symmetry group of an object X is G = Sym(X). For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space. This article mainly considers symmetry groups in Euclidean geometry, but the concept may also be studied for more general types of geometric structure.
D nh is the symmetry group for a regular n-sided prism and also for a regular n-sided bipyramid. D nd is the symmetry group for a regular n-sided antiprism, and also for a regular n-sided trapezohedron. D n is the symmetry group of a partially rotated prism. n = 1 is not included because the three symmetries are equal to other ones:
Finite spherical symmetry groups are also called point groups in three dimensions. There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry. This article lists the groups by Schoenflies notation, Coxeter notation, [1] orbifold notation, [2] and order.
The elements of this symmetry group should not be confused with the "symmetry element" itself. Loosely, a symmetry element is the geometric set of fixed points of a symmetry operation. For example, for rotation about an axis, the points on the axis do not move and in a reflection the points that remain unchanged make up a plane of symmetry.