enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Rather than storing values as a fixed number of bits related to the size of the processor register, these implementations typically use variable-length arrays of digits. Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required.

  4. Magic number (programming) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(programming)

    Magic numbers become particularly confusing when the same number is used for different purposes in one section of code. It is easier to alter the value of the number, as it is not duplicated. Changing the value of a magic number is error-prone, because the same value is often used several times in different places within a program. [6]

  5. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    PHP: The BC Math module provides arbitrary precision mathematics. PicoLisp: supports arbitrary precision integers. Pike: the built-in int type will silently change from machine-native integer to arbitrary precision as soon as the value exceeds the former's capacity. Prolog: ISO standard compatible Prolog systems can check the Prolog flag ...

  6. Comparison of programming languages (array) - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.

  7. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    For intermediate values stored in digital computers, it often means the binary numeral system (m is an integer times a power of 2). The abstract single-argument "round()" function that returns an integer from an arbitrary real value has at least a dozen distinct concrete definitions presented in the rounding to integer section.

  8. Arithmetic underflow - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_underflow

    For integers, the term "integer underflow" typically refers to a special kind of integer overflow or integer wraparound condition whereby the result of subtraction would result in a value less than the minimum allowed for a given integer type, i.e. the ideal result was closer to negative infinity than the output type's representable value ...

  9. Increment and decrement operators - Wikipedia

    en.wikipedia.org/wiki/Increment_and_decrement...

    Apple's Swift once supported these operators, but they have been depreciated since version 2.2 [13] and removed as of version 3.0. [14] [15] Pascal, Delphi, Modula-2, and Oberon uses functions (inc(x) and dec(x)) instead of operators. Notably Python and Rust do not support these operators.