Search results
Results from the WOW.Com Content Network
Quantum mechanics provides two fundamental examples of the duality between position and momentum, the Heisenberg uncertainty principle ΔxΔp ≥ ħ/2 stating that position and momentum cannot be simultaneously known to arbitrary precision, and the de Broglie relation p = ħk which states the momentum and wavevector of a free particle are ...
Canonical coordinates are defined as a special set of coordinates on the cotangent bundle of a manifold.They are usually written as a set of (,) or (,) with the x ' s or q ' s denoting the coordinates on the underlying manifold and the p ' s denoting the conjugate momentum, which are 1-forms in the cotangent bundle at point q in the manifold.
Download as PDF; Printable version; In other projects ... A fundamental physical constant occurring in quantum mechanics is the Planck ... the coordinates are ...
Each theory of quantum gravity uses the term "quantum geometry" in a slightly different fashion. String theory, a leading candidate for a quantum theory of gravity, uses it to describe exotic phenomena such as T-duality and other geometric dualities, mirror symmetry, topology-changing transitions [clarification needed], minimal possible distance scale, and other effects that challenge intuition.
In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory.It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest.
The implication is that a quantum field theory on noncommutative spacetime can be interpreted as a low energy limit of the theory of open strings. Two papers, one by Sergio Doplicher , Klaus Fredenhagen and John Roberts [ 5 ] and the other by D. V. Ahluwalia, [ 6 ] set out another motivation for the possible noncommutativity of space-time.
In light-front coordinates, + = +, =, the spatial coordinates ,, do not enter symmetrically: the coordinate is distinguished, whereas and do not appear at all. This non-covariant definition destroys the spatial symmetry that, in its turn, results in a few difficulties related to the fact that some transformation of the reference frame may ...
The phase-space formulation is a formulation of quantum mechanics that places the position and momentum variables on equal footing in phase space.The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.