Search results
Results from the WOW.Com Content Network
An oriented -dimensional Riemannian manifold (,) has a unique -form called the Riemannian volume form. [7] The Riemannian volume form is preserved by orientation-preserving isometries. [8] The volume form gives rise to a measure on which allows measurable functions to be integrated. [citation needed] If is compact, the volume of is . [7]
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold ...
The second term in the formula represents the exterior derivative of the interior product of the volume form with the vector field on S, defined as the tangential projection of W t. Via Cartan's magic formula , this term can also be written as the Lie derivative of the volume form relative to the tangential projection.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
An extension of the fundamental theorem states that given a pseudo-Riemannian manifold there is a unique connection preserving the metric tensor, with any given vector-valued 2-form as its torsion. The difference between an arbitrary connection (with torsion) and the corresponding Levi-Civita connection is the contorsion tensor .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If M is not oriented, then the above calculation carries through exactly as presented, except that the volume form must instead be replaced by a volume element (a density rather than a form). Neither the gradient nor the divergence actually depends on the choice of orientation, and so the Laplace–Beltrami operator itself does not depend on ...