Search results
Results from the WOW.Com Content Network
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
Inverse model of a reaching task. The arm's desired trajectory, Xref(t), is input into the model, which generates the necessary motor commands, ũ(t), to control the arm. Inverse models use the desired and actual position of the body as inputs to estimate the necessary motor commands which would transform the current position into the desired one.
A cellular automaton is defined by its cells (often a one- or two-dimensional array), a finite set of values or states that can go into each cell, a neighborhood associating each cell with a finite set of nearby cells, and an update rule according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells.
A universal machine U is a machine for which every other machine V there exists a total computable function h such that () = (()). An optimal machine is a universal machine that achieves the Kolmogorov complexity invariance bound , i.e. for every machine V , there exists c such that for all outputs x , if a V -program of length n outputs x ...
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
Reversible computing is any model of computation where the computational process, to some extent, is time-reversible.In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary condition for reversibility is that the relation of the mapping from states to their successors must be one-to-one.
A common type of implicit function is an inverse function. Not all functions have a unique inverse function. If g is a function of x that has a unique inverse, then the inverse function of g, called g −1, is the unique function giving a solution of the equation = for x in terms of y. This solution can then be written as
Forward vs. inverse kinematics. In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain.