enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  3. Multivariate statistics - Wikipedia

    en.wikipedia.org/wiki/Multivariate_statistics

    Multivariate regression attempts to determine a formula that can describe how elements in a vector of variables respond simultaneously to changes in others. For linear relations, regression analyses here are based on forms of the general linear model. Some suggest that multivariate regression is distinct from multivariable regression, however ...

  4. Seemingly unrelated regressions - Wikipedia

    en.wikipedia.org/.../Seemingly_unrelated_regressions

    In econometrics, the seemingly unrelated regressions (SUR) [1]: 306 [2]: 279 [3]: 332 or seemingly unrelated regression equations (SURE) [4] [5]: 2 model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially ...

  5. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    The stepwise method enters the predictors sequentially. The two-group method should be used when the dependent variable has two categories or states. The multiple discriminant method is used when the dependent variable has three or more categorical states. Use Wilks's Lambda to test for significance in SPSS or F stat in SAS. The most common ...

  6. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    Stepwise regression (the procedure of excluding "collinear" or "insignificant" variables) is especially vulnerable to multicollinearity, and is one of the few procedures wholly invalidated by it (with any collinearity resulting in heavily biased estimates and invalidated p-values).

  7. Exploratory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_factor_analysis

    Fitting procedures are used to estimate the factor loadings and unique variances of the model (Factor loadings are the regression coefficients between items and factors and measure the influence of a common factor on a measured variable). There are several factor analysis fitting methods to choose from, however there is little information on ...

  8. Path analysis (statistics) - Wikipedia

    en.wikipedia.org/wiki/Path_analysis_(statistics)

    In statistics, path analysis is used to describe the directed dependencies among a set of variables. This includes models equivalent to any form of multiple regression analysis, factor analysis, canonical correlation analysis, discriminant analysis, as well as more general families of models in the multivariate analysis of variance and covariance analyses (MANOVA, ANOVA, ANCOVA).

  9. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    The Heckman correction is a two-step M-estimator where the covariance matrix generated by OLS estimation of the second stage is inconsistent. [7] Correct standard errors and other statistics can be generated from an asymptotic approximation or by resampling, such as through a bootstrap .