Search results
Results from the WOW.Com Content Network
Most bombs do not apparently have tertiary "stages"—that is, third compression stage(s), which are additional fusion stages compressed by a previous fusion stage. The fissioning of the last blanket of uranium, which provides about half the yield in large bombs, does not count as a "stage" in this terminology. [citation needed]
Thermonuclear bombs work by using the energy of a fission bomb to compress and heat fusion fuel. In the Teller-Ulam design, which accounts for all multi-megaton yield hydrogen bombs, this is accomplished by placing a fission bomb and fusion fuel (tritium, deuterium, or lithium deuteride) in proximity within a special, radiation-reflecting ...
Nuclear fission separates or splits heavier atoms to form lighter atoms. Nuclear fusion combines lighter atoms to form heavier atoms. Both reactions generate roughly a million times more energy than comparable chemical reactions, making nuclear bombs a million times more powerful than non-nuclear bombs, which a French patent claimed in May 1939.
The first time gun-type fission weapons were discussed was as part of the British Tube Alloys nuclear bomb development program, the world's first nuclear bomb development program. [1] The British MAUD Report [ 2 ] of 1941 laid out how "an effective uranium bomb which, containing some 25 lb of active material, would be equivalent as regards ...
This is the situation in a fission bomb where growth is at an explosive rate. If k is exactly unity, the reactions proceed at a steady rate and the reactor is said to be critical. It is possible to achieve criticality in a reactor using natural uranium as fuel, provided that the neutrons have been efficiently moderated to thermal energies."
A boosted fission weapon usually refers to a type of nuclear bomb that uses a small amount of fusion fuel to increase the rate, and thus yield, of a fission reaction. The neutrons released by the fusion reactions add to the neutrons released due to fission, allowing for more neutron-induced fission reactions to take place.
Though nuclear fusion was technically achieved, it did not have the scaling property of a staged weapon, and their first hydrogen bomb test, Joe 4, is considered a hybrid fission/fusion device more similar to a large boosted fission weapon than a Teller–Ulam weapon (though using an order of magnitude more fusion fuel than a boosted weapon).
In common with all neutron bombs that must presently derive a small percentage of trigger energy from fission, in any given yield, a 100% pure fusion bomb would likewise generate a smaller atmospheric blast wave than a pure-fission bomb. The latter fission device has a higher kinetic energy-ratio per unit of reaction energy released, which is ...