Search results
Results from the WOW.Com Content Network
The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:
When they exist, the osculating circles to parallel curves at corresponding points are concentric. [13] As for parallel lines, a normal line to a curve is also normal to its parallels. When parallel curves are constructed they will have cusps when the distance from the curve matches the radius of curvature.
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The gradient of a function is called a gradient field. A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative ...
the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m , a common perpendicular would have slope −1/ m and we can take the line with equation y = − x / m as a common perpendicular.
The fundamental theorem of line integrals says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. Let φ : U ⊆ R 2 → R {\displaystyle \varphi :U\subseteq \mathbb {R} ^{2}\to \mathbb {R} } .
Trump has vowed to enact sweeping trade restrictions ranging from across-the-board import duties to increasing the cost of goods from China through tariffs as high as 60% to 100%.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...