enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flow plasticity theory - Wikipedia

    en.wikipedia.org/wiki/Flow_plasticity_theory

    Plastic deformation of a thin metal sheet. Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. [1] Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.

  3. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    An idealized uniaxial stress-strain curve showing elastic and plastic deformation regimes for the deformation theory of plasticity. There are several mathematical descriptions of plasticity. [12] One is deformation theory (see e.g. Hooke's law) where the Cauchy stress tensor (of order d-1 in d dimensions) is a function of the strain tensor ...

  4. Plastic limit theorems - Wikipedia

    en.wikipedia.org/wiki/Plastic_limit_theorems

    The two plastic limit theorems apply to any elastic-perfectly plastic body or assemblage of bodies. Lower limit theorem: If an equilibrium distribution of stress can be found which balances the applied load and nowhere violates the yield criterion, the body (or bodies) will not fail, or will be just at the point of failure. [2] Upper limit theorem:

  5. Lankford coefficient - Wikipedia

    en.wikipedia.org/wiki/Lankford_coefficient

    The Lankford coefficient (also called Lankford value, R-value, or plastic strain ratio) [1] is a measure of the plastic anisotropy of a rolled sheet metal. This scalar quantity is used extensively as an indicator of the formability of recrystallized low-carbon steel sheets.

  6. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    For elastomers, such as rubber, the elastic limit is much larger than the proportionality limit. Also, precise strain measurements have shown that plastic strain begins at very low stresses. [11] [12] Yield point The point in the stress-strain curve at which the curve levels off and plastic deformation begins to occur. [13]

  7. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.

  8. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    This is not true since the actual area will decrease while deforming due to elastic and plastic deformation. The curve based on the original cross-section and gauge length is called the engineering stress–strain curve, while the curve based on the instantaneous cross-section area and length is called the true stress–strain curve. Unless ...

  9. Viscoplasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoplasticity

    This model has been used to model the plastic deformation of copper, tantalum, [30] alloys of steel, [31] [32] and aluminum alloys. [33] However, the MTS model is limited to strain-rates less than around 10 7 /s.