Search results
Results from the WOW.Com Content Network
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins ; that is they exist permanently within and span the membrane across which they transport substances.
The rate of ion transport through the channel is very high (often 10 6 ions per second or greater). Ions pass through channels down their electrochemical gradient, which is a function of ion concentration and membrane potential, "downhill", without the input (or help) of metabolic energy (e.g. ATP, co-transport mechanisms, or active transport ...
The structure of the complex of sodium (Na +) and the antibiotic monensin A Structure of a potassium complex of a crown ether, a synthetic ionophore-ion complex. Biological activities of metal ion-binding compounds can be changed in response to the increment of the metal concentration, and based on the latter compounds can be classified as "metal ionophores", "metal chelators" or "metal ...
Voltage-gated ion-channels are usually ion-specific, and channels specific to sodium (Na +), potassium (K +), calcium (Ca 2+), and chloride (Cl −) ions have been identified. [1] The opening and closing of the channels are triggered by changing ion concentration, and hence charge gradient, between the sides of the cell membrane.
The pore of sodium channels contains a selectivity filter made of negatively charged amino acid residues, which attract the positive Na + ion and keep out negatively charged ions such as chloride. The cations flow into a more constricted part of the pore that is 0.3 by 0.5 nm wide, which is just large enough to allow a single Na + ion with a ...
This structure probably involves a conduit through hydrophilic protein environments that cause a disruption in the highly hydrophobic medium formed by the lipids. [1] These proteins can be involved in transport in a number of ways: they act as pumps driven by ATP, that is, by metabolic energy, or as channels of facilitated diffusion.
Substances that are transported across the cell membrane by primary active transport include metal ions, such as Na +, K +, Mg 2+, and Ca 2+. These charged particles require ion pumps or ion channels to cross membranes and distribute through the body. [citation needed] Most of the enzymes that perform this type of transport are transmembrane ...