Search results
Results from the WOW.Com Content Network
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
A membrane transport protein is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane proteins ; that is they exist permanently within and span the membrane across which they transport substances.
The rate of ion transport through the channel is very high (often 10 6 ions per second or greater). Ions pass through channels down their electrochemical gradient, which is a function of ion concentration and membrane potential, "downhill", without the input (or help) of metabolic energy (e.g. ATP, co-transport mechanisms, or active transport ...
Pendrin is an anion exchange protein that in humans is encoded by the SLC26A4 gene (solute carrier family 26, member 4). [5] [6] Pendrin was initially identified as a sodium-independent chloride-iodide exchanger [7] with subsequent studies showing that it also accepts formate and bicarbonate as substrates.
The pore of sodium channels contains a selectivity filter made of negatively charged amino acid residues, which attract the positive Na + ion and keep out negatively charged ions such as chloride. The cations flow into a more constricted part of the pore that is 0.3 by 0.5 nm wide, which is just large enough to allow a single Na + ion with a ...
Thermodynamically the flow of substances from one compartment to another can occur in the direction of a concentration or electrochemical gradient or against it. If the exchange of substances occurs in the direction of the gradient, that is, in the direction of decreasing potential, there is no requirement for an input of energy from outside the system; if, however, the transport is against ...
The anion exchanger family (TC# 2.A.31, also named bicarbonate transporter family) is a member of the large APC superfamily of secondary carriers. [1] Members of the AE family are generally responsible for the transport of anions across cellular barriers, although their functions may vary. All of them exchange bicarbonate. Characterized protein ...
The CLC channel structure has not yet been resolved, however the structure of the CLC exchangers has been resolved by x-ray crystallography. Because the primary structure of the channels and exchangers are so similar, most assumptions about the structure of the channels are based on the structure established for the bacterial exchangers. [5]