Search results
Results from the WOW.Com Content Network
Examples of Lewis dot diagrams used to represent electrons in the chemical bonds between atoms, here showing carbon (C), hydrogen (H), and oxygen (O). Lewis diagrams were developed in 1916 by Gilbert N. Lewis to describe chemical bonding and are still widely used today. Each line segment or pair of dots represents a pair of electrons.
The discovery and categorization of heterolytic bond fission was clearly dependent on the discovery and categorization of the chemical bond. In 1916, chemist Gilbert N. Lewis developed the concept of the electron-pair bond, in which two atoms share one to six electrons, thus forming the single electron bond, a single bond, a double bond, or a triple bond. [3]
Usually hydrolysis is a chemical process in which a molecule of water is added to a substance. Sometimes this addition causes both the substance and water molecule to split into two parts. In such reactions, one fragment of the target molecule (or parent molecule) gains a hydrogen ion. It breaks a chemical bond in the compound.
Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei (no change to the elements present), and can often be described by a chemical equation.
The triplet and singlet excitation energies of a sigma bond can be used to determine if a bond will follow the homolytic or heterolytic pathway. [2] A metal−metal sigma bond is an exception because the bond's excitation energy is extremely high, thus cannot be used for observation purposes. [2] In some cases, bond cleavage requires catalysts.
The bond-dissociation energies of several different bonds of the same type can vary even within a single molecule. For example, a water molecule is composed of two O–H bonds bonded as H–O–H. The bond energy for H 2 O is the average energy required to break each of the two O–H bonds in sequence:
The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing decomposition. If decomposition is sufficiently exothermic, a positive feedback loop is created producing thermal runaway and possibly an explosion or other chemical reaction. Thermal decomposition is a chemical reaction where heat is a ...
Bond cleavage is also possible by a process called heterolysis. The energy involved in this process is called bond dissociation energy (BDE). [ 2 ] BDE is defined as the " enthalpy (per mole ) required to break a given bond of some specific molecular entity by homolysis," symbolized as D . [ 3 ]