enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation in the one-dimensional case can be derived from Hooke's law in the following way: imagine an array of little weights of mass m interconnected with massless springs of length h. The springs have a spring constant of k:

  3. d'Alembert's formula - Wikipedia

    en.wikipedia.org/wiki/D'Alembert's_formula

    All second order differential equations with constant coefficients can be transformed into their respective canonic forms. This equation is one of these three cases: Elliptic partial differential equation, Parabolic partial differential equation and Hyperbolic partial differential equation.

  4. One-way wave equation - Wikipedia

    en.wikipedia.org/wiki/One-way_wave_equation

    The one-way equation and solution in the three-dimensional case was assumed to be similar way as for the one-dimensional case by a mathematical decomposition (factorization) of a 2nd order differential equation. [15] In fact, the 3D One-way wave equation can be derived from first principles: a) derivation from impedance theorem [3] and b ...

  5. Duhamel's principle - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_principle

    Intuitively, one can think of the inhomogeneous problem as a set of homogeneous problems each starting afresh at a different time slice t = t 0. By linearity, one can add up (integrate) the resulting solutions through time t 0 and obtain the solution for the inhomogeneous problem. This is the essence of Duhamel's principle.

  6. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    1-dimensional corollaries for two sinusoidal waves The following may be deduced by applying the principle of superposition to two sinusoidal waves, using trigonometric identities. The angle addition and sum-to-product trigonometric formulae are useful; in more advanced work complex numbers and fourier series and transforms are used.

  7. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    In this theory, the wave equations and the wave functions have their place, but in a somewhat different guise. The main objects of interest are not the wave functions, but rather operators, so called field operators (or just fields where "operator" is understood) on the Hilbert space of states (to be described next section). It turns out that ...

  8. Kadomtsev–Petviashvili equation - Wikipedia

    en.wikipedia.org/wiki/Kadomtsev–Petviashvili...

    The above form shows that the KP equation is a generalization to two spatial dimensions, x and y, of the one-dimensional Korteweg–de Vries (KdV) equation. To be physically meaningful, the wave propagation direction has to be not-too-far from the x direction, i.e. with only slow variations of solutions in the y direction.

  9. Korteweg–De Vries equation - Wikipedia

    en.wikipedia.org/wiki/Korteweg–De_Vries_equation

    Cnoidal wave solution to the Korteweg–De Vries equation, in terms of the square of the Jacobi elliptic function cn (and with value of the parameter m = 0.9). Numerical solution of the KdV equation u t + uu x + δ 2 u xxx = 0 (δ = 0.022) with an initial condition u(x, 0) = cos(πx).