enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two numbers that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers , commonly denoted F n .

  3. Fibonacci coding - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_coding

    To encode an integer N: . Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.; If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0).

  4. Fibonacci search technique - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_search_technique

    Fibonacci search has an average- and worst-case complexity of O(log n) (see Big O notation). The Fibonacci sequence has the property that a number is the sum of its two predecessors. Therefore the sequence can be computed by repeated addition. The ratio of two consecutive numbers approaches the Golden ratio, 1.618... Binary search works by ...

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.

  6. Fibonorial - Wikipedia

    en.wikipedia.org/wiki/Fibonorial

    Here the fibonorial constant (also called the fibonacci factorial constant [1]) is defined by = = (), where = and is the golden ratio. An approximate truncated value of C {\displaystyle C} is 1.226742010720 (see (sequence A062073 in the OEIS ) for more digits).

  7. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    Using dynamic programming in the calculation of the nth member of the Fibonacci sequence improves its performance greatly. Here is a naïve implementation, based directly on the mathematical definition: function fib(n) if n <= 1 return n return fib(n − 1) + fib(n − 2)

  8. Overlapping subproblems - Wikipedia

    en.wikipedia.org/wiki/Overlapping_subproblems

    Therefore, the computation of F(n − 2) is reused, and the Fibonacci sequence thus exhibits overlapping subproblems. A naive recursive approach to such a problem generally fails due to an exponential complexity. If the problem also shares an optimal substructure property, dynamic programming is a good way to work it out.

  9. Lagged Fibonacci generator - Wikipedia

    en.wikipedia.org/wiki/Lagged_Fibonacci_generator

    A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...