Search results
Results from the WOW.Com Content Network
In mathematics, the special linear group SL(n, R) of degree n over a commutative ring R is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant
The infinite general linear group or stable general linear group is the direct limit of the inclusions GL(n, F) → GL(n + 1, F) as the upper left block matrix. It is denoted by either GL( F ) or GL(∞, F ) , and can also be interpreted as invertible infinite matrices which differ from the identity matrix in only finitely many places.
In the theory of algebraic groups, a special group is a linear algebraic group G with the property that every principal G-bundle is locally trivial in the Zariski topology. Special groups include the general linear group, the special linear group, and the symplectic group. Special groups are necessarily connected. Products of special groups are ...
Among the examples above the additive, multiplicative groups and the general and special linear groups are affine. Using the action of an affine algebraic group on its coordinate ring it can be shown that every affine algebraic group is a linear (or matrix group), meaning that it is isomorphic to an algebraic subgroup of the general linear group.
The group GL n (K) itself; The special linear group SL n (K) (the subgroup of matrices with determinant 1); The group of invertible upper (or lower) triangular matrices; If g i is a collection of elements in GL n (K) indexed by a set I, then the subgroup generated by the g i is a linear group.
In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane.
Reductive groups include the most important linear algebraic groups in practice, such as the classical groups: GL(n), SL(n), the orthogonal groups SO(n) and the symplectic groups Sp(2n). On the other hand, the definition of reductive groups is quite "negative", and it is not clear that one can expect to say much about them.
For example, if we consider the action of the special linear group SL n on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SL n.