Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.
The F table serves as a reference guide containing critical F values for the distribution of the F-statistic under the assumption of a true null hypothesis. It is designed to help determine the threshold beyond which the F statistic is expected to exceed a controlled percentage of the time (e.g., 5%) when the null hypothesis is accurate.
In order to create the studentized range distribution for normal data, we first switch from the generic f X and F X to the distribution functions φ and Φ for the standard normal distribution, and change the variable r to s·q, where q is a fixed factor that re-scales r by scaling factor s:
The test statistic is approximately F-distributed with and degrees of freedom, and hence is the significance of the outcome of tested against (;,) where is a quantile of the F-distribution, with and degrees of freedom, and is the chosen level of significance (usually 0.05 or 0.01).
Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as –0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.
To check for statistical significance of a one-way ANOVA, we consult the F-probability table using degrees of freedom at the 0.05 alpha level. After computing the F-statistic, we compare the value at the intersection of each degrees of freedom, also known as the critical value. If one's F-statistic is greater in magnitude than their critical ...
has an F-distribution with n − 1 and m − 1 degrees of freedom if the null hypothesis of equality of variances is true. Otherwise it follows an F-distribution scaled by the ratio of true variances. The null hypothesis is rejected if F is either too large or too small based on the desired alpha level (i.e., statistical significance).
Step 5: The F-ratio is = / The critical value is the number that the test statistic must exceed to reject the test. In this case, F crit (2,15) = 3.68 at α = 0.05. Since F=9.3 > 3.68, the results are significant at the 5% significance level. One would not accept the null hypothesis, concluding that there is strong evidence that the expected ...