enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Analysis of variance (ANOVA) is a family of statistical methods used to compare the means of two or more groups by analyzing variance. Specifically, ANOVA compares the amount of variation between the group means to the amount of variation within each group. If the between-group variation is substantially larger than the within-group variation ...

  3. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1]

  4. Two-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Two-way_analysis_of_variance

    In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.

  5. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    This is perhaps the best-known F-test, and plays an important role in the analysis of variance (ANOVA). F test of analysis of variance (ANOVA) follows three assumptions Normality (statistics) Homogeneity of variance; Independence of errors and random sampling; The hypothesis that a proposed regression model fits the data well.

  6. Multivariate analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Multivariate_analysis_of...

    In statistics, multivariate analysis of variance (MANOVA) is a procedure for comparing multivariate sample means. As a multivariate procedure, it is used when there are two or more dependent variables, [1] and is often followed by significance tests involving individual dependent variables separately. [2]

  7. Interaction (statistics) - Wikipedia

    en.wikipedia.org/wiki/Interaction_(statistics)

    A simple setting in which interactions can arise is a two-factor experiment analyzed using Analysis of Variance (ANOVA). Suppose we have two binary factors A and B.For example, these factors might indicate whether either of two treatments were administered to a patient, with the treatments applied either singly, or in combination.

  8. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    The parametric equivalent of the Kruskal–Wallis test is the one-way analysis of variance (ANOVA). A significant Kruskal–Wallis test indicates that at least one sample stochastically dominates one other sample. The test does not identify where this stochastic dominance occurs or for how many pairs of groups stochastic dominance obtains.

  9. Mixed-design analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Mixed-design_analysis_of...

    In statistics, a mixed-design analysis of variance model, also known as a split-plot ANOVA, is used to test for differences between two or more independent groups whilst subjecting participants to repeated measures.