enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational singularity - Wikipedia

    en.wikipedia.org/wiki/Gravitational_singularity

    General relativity predicts that any object collapsing beyond a certain point (for stars this is the Schwarzschild radius) would form a black hole, inside which a singularity (covered by an event horizon) would be formed. [2] The Penrose–Hawking singularity theorems define a singularity to have geodesics that cannot be extended in a smooth ...

  3. Penrose–Hawking singularity theorems - Wikipedia

    en.wikipedia.org/wiki/Penrose–Hawking...

    A singularity in solutions of the Einstein field equations is one of three things: Spacelike singularities: The singularity lies in the future or past of all events within a certain region. The Big Bang singularity and the typical singularity inside a non-rotating, uncharged Schwarzschild black hole are spacelike.

  4. Ring singularity - Wikipedia

    en.wikipedia.org/wiki/Ring_singularity

    This is not necessarily true with a Kerr black hole. An observer falling into a Kerr black hole may be able to avoid the central singularity by making clever use of the inner event horizon associated with this class of black hole. This makes it theoretically (but not likely practically) [2] possible for the Kerr black hole to act as a sort of ...

  5. Naked singularity - Wikipedia

    en.wikipedia.org/wiki/Naked_singularity

    In a black hole, the singularity is completely enclosed by a boundary known as the event horizon, inside which the curvature of spacetime caused by the singularity is so strong that light cannot escape. Hence, objects inside the event horizon—including the singularity itself—cannot be observed directly.

  6. Black hole information paradox - Wikipedia

    en.wikipedia.org/wiki/Black_hole_information_paradox

    The final-state proposal [66] suggests that boundary conditions must be imposed at the black-hole singularity, which, from a causal perspective, is to the future of all events in the black-hole interior. This helps reconcile black-hole evaporation with unitarity but contradicts the intuitive idea of causality and locality of time-evolution.

  7. Black hole - Wikipedia

    en.wikipedia.org/wiki/Black_hole

    A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...

  8. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    (Supermassive black holes up to 21 billion (2.1 × 10 10) M ☉ have been detected, such as NGC 4889.) [16] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the ...

  9. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    Any event inside the black hole interior region will have a future light cone that remains in this region (such that any world line within the event's future light cone will eventually hit the black hole singularity, which appears as a hyperbola bounded by the two black hole horizons), and any event inside the white hole interior region will ...