Search results
Results from the WOW.Com Content Network
Illustration of an activator. In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence.
A sigma factor is a protein needed only for initiation of RNA synthesis in bacteria. [12] Sigma factors provide promoter recognition specificity to the RNA polymerase (RNAP) and contribute to DNA strand separation, then dissociating from the RNA polymerase core enzyme following transcription initiation. [13]
Several cell function specific transcription factors (there are about 1,600 transcription factors in a human cell [35]) generally bind to specific motifs on an enhancer [36] and a small combination of these enhancer-bound transcription factors, when brought close to a promoter by a DNA loop, govern level of transcription of the target gene.
General transcription factors bind to the promoter. When a transcription factor is activated by a signal (here indicated as phosphorylation shown by a small red star on a transcription factor on the enhancer) the enhancer is activated and can now activate its target promoter. The active enhancer is transcribed on each strand of DNA in opposite ...
Transcription factors and associated proteins that bind promoters, enhancers, or silencers to drive or repress transcription are fundamental to understanding the unique regulation of individual genes within the genome. Techniques like DNA footprinting help elucidate which proteins bind to these associated regions of DNA and unravel the ...
Like many other transcription factors, STATs are capable of recruiting co-activators such as CBP and p300, and these co-activators increase the rate of transcription of target genes. [2] The coactivators are able to do this by making genes on DNA more accessible to STATs and by recruiting proteins needed for transcription of genes.
In the field of molecular biology, myocyte enhancer factor-2 (Mef2) proteins are a family of transcription factors which through control of gene expression are important regulators of cellular differentiation and consequently play a critical role in embryonic development. [1] In adult organisms, Mef2 proteins mediate the stress response in some ...
Once DNA-protein binding is determined in vitro, a number of algorithms can narrow the search for identification of the transcription factor. Consensus sequence oligonucleotides for the transcription factor of interest will be able to compete for the binding, eliminating the shifted band, and must be confirmed by supershift.