Search results
Results from the WOW.Com Content Network
In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.
Volumetric flow rate is defined by the limit [3] = ˙ = =, that is, the flow of volume of fluid V through a surface per unit time t.. Since this is only the time derivative of volume, a scalar quantity, the volumetric flow rate is also a scalar quantity.
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m-1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus
A cone and a cylinder have radius r and height h. 2. The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.
The volume rate of flow of liquid through a source or sink (with the flow through a sink given a negative sign) is equal to the divergence of the velocity field at the pipe mouth, so adding up (integrating) the divergence of the liquid throughout the volume enclosed by S equals the volume rate of flux through S. This is the divergence theorem.
The Manning formula or Manning's equation is an empirical ... k is a conversion factor ... This means the greater the hydraulic radius, the larger volume of water the ...
Using the number density as a function of spatial coordinates, the total number of objects N in the entire volume V can be calculated as = (,,), where dV = dx dy dz is a volume element. If each object possesses the same mass m 0 , the total mass m of all the objects in the volume V can be expressed as m = ∭ V m 0 n ( x , y , z ) d V ...
Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the square–cube law.