Search results
Results from the WOW.Com Content Network
Setting a value for any of the cell or organelle attributes will make its diagram visible; Any number and combination of diagram attributes may be set; When multiple diagrams are activated, the title is suppressed {
Each chemical modification (red box) is performed by a different enzyme. Steps 1 and 3 consume ATP (blue) and steps 7 and 10 produce ATP (yellow). Since steps 6-10 occur twice per glucose molecule, this leads to a net production of energy."
ATP synthase is the enzyme that makes ATP by chemiosmosis. It allows protons to pass through the membrane and uses the free energy difference to convert phosphorylate adenosine diphosphate (ADP) into ATP. The ATP synthase contains two parts: CF0 (present in thylakoid membrane) and CF1 (protrudes on the outer surface of thylakoid membrane).
ATP is shown in red, ADP and phosphate in pink and the rotating γ subunit in black. This ATP synthesis reaction is called the binding change mechanism and involves the active site of a β subunit cycling between three states. [77] In the "open" state, ADP and phosphate enter the active site (shown in brown in the diagram).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The ATP molecule binds to the connecting point of each subunit of the dimer, indicating that ATP is in close proximity to both subunits during catalysis. The two binding motifs that ATP directly interacts with is the residues from the Walker A motif, located on one of the subunits, and the residues from the C binding motif, located on the other ...
Most useful ATP analogs cannot be hydrolyzed as ATP would be; instead, they trap the enzyme in a structure closely related to the ATP-bound state. Adenosine 5′-(γ-thiotriphosphate) is an extremely common ATP analog in which one of the gamma-phosphate oxygens is replaced by a sulfur atom; this anion is hydrolyzed at a dramatically slower rate ...
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]