Search results
Results from the WOW.Com Content Network
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
Computes the great circle distance between two points, specified by the latitude and longitude, using the haversine formula. Template parameters [Edit template data] Parameter Description Type Status Latitude 1 lat1 1 Latitude of point 1 in decimal degrees Default 0 Number required Longitude 1 long1 2 Longitude of point 1 in decimal degrees Default 0 Number required Latitude 2 lat2 3 Latitude ...
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).
Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.
That is (unlike road distance with one-way streets) the distance between two points does not depend on which of the two points is the start and which is the destination. [11] It is positive, meaning that the distance between every two distinct points is a positive number, while the distance from any point to itself is zero. [11]
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...