enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-dimensional flow - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_flow

    As the fluid flows outward, the area of flow increases. As a result, to satisfy continuity equation, the velocity decreases and the streamlines spread out. The velocity at all points at a given distance from the source is the same. Fig 2 - Streamlines and potential lines for source flow. The velocity of fluid flow can be given as -

  3. Stream function - Wikipedia

    en.wikipedia.org/wiki/Stream_function

    The velocity satisfies the continuity equation for incompressible flow: ∇ ⋅ u = 0. {\displaystyle \quad \nabla \cdot \mathbf {u} =0.} Although in principle the stream function doesn't require the use of a particular coordinate system, for convenience the description presented here uses a right-handed Cartesian coordinate system with ...

  4. Upwind differencing scheme for convection - Wikipedia

    en.wikipedia.org/wiki/Upwind_differencing_scheme...

    Solution in the central difference scheme fails to converge for Peclet number greater than 2 which can be overcome by using an upwind scheme to give a reasonable result. [1]: Fig. 5.5, 5.13 Therefore the upwind differencing scheme is applicable for Pe > 2 for positive flow and Pe < −2 for negative flow. For other values of Pe, this scheme ...

  5. Projection method (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Projection_method_(fluid...

    First the system is progressed in time to a mid-time-step position, solving the above transport equations for mass and momentum using a suitable advection method. This is denoted the predictor step. At this point an initial projection may be implemented such that the mid-time-step velocity field is enforced as divergence free.

  6. Taylor–Green vortex - Wikipedia

    en.wikipedia.org/wiki/Taylor–Green_vortex

    The small time behavior of the flow is then found through simplification of the incompressible Navier–Stokes equations using the initial flow to give a step-by-step solution as time progresses. An exact solution in two spatial dimensions is known, and is presented below.

  7. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).

  8. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    () then provides the governing equation for pressure computation. The idea of pressure-correction also exists in the case of variable density and high Mach numbers, although in this case there is a real physical meaning behind the coupling of dynamic pressure and velocity as arising from the continuity equation

  9. Continuum mechanics - Wikipedia

    en.wikipedia.org/wiki/Continuum_mechanics

    Continuity in the Eulerian description is expressed by the spatial and temporal continuity and continuous differentiability of the flow velocity field. All physical quantities are defined this way at each instant of time, in the current configuration, as a function of the vector position x {\displaystyle \mathbf {x} } .

  1. Related searches continuity equation for 2d flow model of motor system in python 1 and time

    continuity equation formulatwo dimensional flow flow
    two dimensional flow formula