enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions ), its eigenvalues are the possible position vectors of the particle.

  3. Newton–Wigner localization - Wikipedia

    en.wikipedia.org/wiki/Newton–Wigner_localization

    The Newton–Wigner position operators x 1, x 2, x 3, are the premier notion of position in relativistic quantum mechanics of a single particle. They enjoy the same commutation relations with the 3 space momentum operators and transform under rotations in the same way as the x , y , z in ordinary QM .

  4. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Mathematically, the duality between position and momentum is an example of Pontryagin duality. In particular, if a function is given in position space, f(r), then its Fourier transform obtains the function in momentum space, φ(p). Conversely, the inverse Fourier transform of a momentum space function is a position space function.

  5. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their ...

  6. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    The momentum operator can be described as a symmetric (i.e. Hermitian), unbounded operator acting on a dense subspace of the quantum state space. If the operator acts on a (normalizable) quantum state then the operator is self-adjoint. In physics the term Hermitian often refers to both symmetric and self-adjoint operators. [7] [8]

  7. Complete set of commuting observables - Wikipedia

    en.wikipedia.org/wiki/Complete_set_of_commuting...

    For example, the eigenstate of ^ corresponding to the eigenvalue can be labelled as | . Such an observable is itself a self-sufficient CSCO. Such an observable is itself a self-sufficient CSCO. However, if some of the eigenvalues of a n {\displaystyle a_{n}} are degenerate (such as having degenerate energy levels ), then the above result no ...

  8. Operator (physics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(physics)

    An operator is a function over a space of physical states onto another space of states. The simplest example of the utility of operators is the study of symmetry (which makes the concept of a group useful in this context). Because of this, they are useful tools in classical mechanics.

  9. Translation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Translation_operator...

    Since translation operators all commute with each other (see above), and since each component of the momentum operator is a sum of two scaled translation operators (e.g. ^ = (^ ((,,)) ^ ((,,)))), it follows that translation operators all commute with the momentum operator, i.e. ^ ^ = ^ ^ This commutation with the momentum operator holds true ...