Search results
Results from the WOW.Com Content Network
The complex numbers of absolute value one form the unit circle. Adding a fixed complex number to all complex numbers defines a translation in the complex plane, and multiplying by a fixed complex number is a similarity centered at the origin (dilating by the absolute
In mathematics, more specifically in abstract algebra, the Frobenius theorem, proved by Ferdinand Georg Frobenius in 1877, characterizes the finite-dimensional associative division algebras over the real numbers. According to the theorem, every such algebra is isomorphic to one of the following: R (the real numbers) C (the complex numbers) H ...
Of major importance in this subject is the extended complex numbers {}, the set of complex numbers with a single additional number appended, usually denoted by the infinity symbol and representing a point at infinity, which is defined to be contained in every exterior domain, making those its topological neighborhoods.
Over an algebraically closed field K (for example the complex numbers C), there are no finite-dimensional associative division algebras, except K itself. [2] Associative division algebras have no nonzero zero divisors. A finite-dimensional unital associative algebra (over any field) is a division algebra if and only if it has no nonzero zero ...
For division to always yield one number rather than an integer quotient plus a remainder, the natural numbers must be extended to rational numbers or real numbers. In these enlarged number systems , division is the inverse operation to multiplication, that is a = c / b means a × b = c , as long as b is not zero.
The machine will perform the following three steps on any odd number until only one 1 remains: Append 1 to the (right) end of the number in binary (giving 2n + 1); Add this to the original number by binary addition (giving 2n + 1 + n = 3n + 1); Remove all trailing 0 s (that is, repeatedly divide by 2 until the result is odd).
Its existence is based on the following theorem: Given two univariate polynomials a(x) and b(x) (where b(x) is a non-zero polynomial) defined over a field (in particular, the reals or complex numbers), there exist two polynomials q(x) (the quotient) and r(x) (the remainder) which satisfy: [7] = () + where
For example, setting c = d = 0 produces a diagonal complex matrix representation of complex numbers, and setting b = d = 0 produces a real matrix representation. The norm of a quaternion (the square root of the product with its conjugate, as with complex numbers) is the square root of the determinant of the corresponding matrix. [30]