Search results
Results from the WOW.Com Content Network
The pulmonary circulation is a division of the circulatory system in all vertebrates. The circuit begins with deoxygenated blood returned from the body to the right atrium of the heart where it is pumped out from the right ventricle to the lungs.
An increase in Pi causes extraalveolar blood vessels to reduce in caliber, in turn causing blood flow to decrease (extraalveolar blood vessels are those blood vessels outside alveoli). Intraalveolar blood vessels (pulmonary capillaries) are thin walled vessels adjacent to alveoli which are subject to the pressure changes described by zones 1-3.
20-40 The alveolar oxygen partial pressure is lower than the atmospheric O 2 partial pressure for two reasons. Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg.
The total concentration of carbon dioxide (in the form of bicarbonate ions, dissolved CO 2, and carbamino groups) in arterial blood (i.e. after it has equilibrated with the alveolar air) is about 26 mM (or 58 ml/100 ml), [27] compared to the concentration of oxygen in saturated arterial blood of about 9 mM (or 20 ml/100 ml blood). [6]
In vertebrates, the circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the body. [1] [2] It includes the cardiovascular system, or vascular system, that consists of the heart and blood vessels (from Greek kardia meaning heart, and Latin vascula meaning vessels).
The normal relaxed state of the lung and chest is partially empty. Further exhalation requires muscular work. Inhalation is an active process requiring work. [4] Some of this work is to overcome frictional resistance to flow, and part is used to deform elastic tissues, and is stored as potential energy, which is recovered during the passive process of exhalation, Tidal breathing is breathing ...
The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.. In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. [1]
Nitrogen (and any other gases except oxygen) in the inspired gas are in equilibrium with their dissolved states in the blood; Inspired and alveolar gases obey the ideal gas law; Carbon dioxide (CO 2) in the alveolar gas is in equilibrium with the arterial blood i.e. that the alveolar and arterial partial pressures are equal