enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The decomposition can be derived from the fundamental property of eigenvectors: = = =. The linearly independent eigenvectors q i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products Ax, for x ∈ C n, which is the same as the image (or range) of the corresponding matrix transformation, and also the ...

  4. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix.

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    There are several methods to render matrices into a more easily accessible form. They are generally referred to as matrix decomposition or matrix factorization techniques. The interest of all these techniques is that they preserve certain properties of the matrices in question, such as determinant, rank, or inverse, so that these quantities can ...

  7. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular eigenvalue algorithm ...

  8. Matrix factorization (algebra) - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization_(algebra)

    For a commutative ring and an element , a matrix factorization of is a pair of n-by-n matrices , such that =. This can be encoded more generally as a Z / 2 {\displaystyle \mathbb {Z} /2} - graded S {\displaystyle S} -module M = M 0 ⊕ M 1 {\displaystyle M=M_{0}\oplus M_{1}} with an endomorphism

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    Matrix rings are non-commutative and have no unique factorization: there are, in general, many ways of writing a matrix as a product of matrices. Thus, the factorization problem consists of finding factors of specified types. For example, the LU decomposition gives a matrix as the product of a lower triangular matrix by an upper triangular matrix.