enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.

  3. Segment addition postulate - Wikipedia

    en.wikipedia.org/wiki/Segment_addition_postulate

    In geometry, the segment addition postulate states that given 2 points A and C, a third point B lies on the line segment AC if and only if the distances between the points satisfy the equation AB + BC = AC.

  4. Euler line - Wikipedia

    en.wikipedia.org/wiki/Euler_line

    In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

  5. Collineation - Wikipedia

    en.wikipedia.org/wiki/Collineation

    Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line is special, and hence generally treated ...

  6. Fano plane - Wikipedia

    en.wikipedia.org/wiki/Fano_plane

    A collineation, automorphism, or symmetry of the Fano plane is a permutation of the 7 points that preserves collinearity: that is, it carries collinear points (on the same line) to collinear points. By the Fundamental theorem of projective geometry , the full collineation group (or automorphism group , or symmetry group ) is the projective ...

  7. Desargues's theorem - Wikipedia

    en.wikipedia.org/wiki/Desargues's_theorem

    the points AB ∩ ab, AC ∩ ac and BC ∩ bc are collinear. The points A, B, a and b are coplanar (lie in the same plane) because of the assumed concurrency of Aa and Bb. Therefore, the lines AB and ab belong to the same plane and must intersect. Further, if the two triangles lie on different planes, then the point AB ∩ ab belongs to

  8. Cross-ratio - Wikipedia

    en.wikipedia.org/wiki/Cross-ratio

    In 1847, von Staudt demonstrated that the algebraic structure is implicit in projective geometry, by creating an algebra based on construction of the projective harmonic conjugate, which he called a throw (German: Wurf): given three points on a line, the harmonic conjugate is a fourth point that makes the cross ratio equal to −1.

  9. Five points determine a conic - Wikipedia

    en.wikipedia.org/wiki/Five_points_determine_a_conic

    In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve). There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.