Search results
Results from the WOW.Com Content Network
The Journal of Time Series Analysis is a bimonthly peer-reviewed academic journal covering mathematical statistics as it relates to the analysis of time series data. It was established in 1980 and is published by John Wiley & Sons. The editor-in-chief is Robert Taylor (University of Essex).
In time series analysis, the Box–Jenkins method, [1] named after the statisticians George Box and Gwilym Jenkins, applies autoregressive moving average (ARMA) or autoregressive integrated moving average (ARIMA) models to find the best fit of a time-series model to past values of a time series.
Yule (1926) and Granger and Newbold (1974) were the first to draw attention to the problem of spurious correlation and find solutions on how to address it in time series analysis. [1] [2] Given two completely unrelated but integrated (non-stationary) time series, the regression analysis of one on the other will tend to produce an apparently ...
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.
Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...
This is an important technique for all types of time series analysis, especially for seasonal adjustment. [2] It seeks to construct, from an observed time series, a number of component series (that could be used to reconstruct the original by additions or multiplications) where each of these has a certain characteristic or type of behavior.
For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram. The correlogram is a commonly used tool for checking randomness in a data set. If random, autocorrelations should be near zero for any and all time ...
Ideally, unevenly spaced time series are analyzed in their unaltered form. However, most of the basic theory for time series analysis was developed at a time when limitations in computing resources favored an analysis of equally spaced data, since in this case efficient linear algebra routines can be used and many problems have an explicit ...